

Executive Summary Report

Membrane-free electrochemical production

01/23/2026

Executive Summary

Top Opportunities:

- Enhanced Weathering & Mineral Carbon Dioxide Removal
- Industrial Brine Management & Zero Liquid Discharge Systems
- Geothermal Lithium Extraction & Brine Management
- Ocean Alkalinity Enhancement for Marine CO2 Removal

TECHNOLOGY COMMERCIALIZATION ASSESSMENT

Membrane-free Electrochemical Production of Acid and Base Solutions Capable of Processing Ultramafic Rocks

Stanford and MIT researchers have demonstrated a membrane-free electrochemical system that generates acid and base from water using only a porous separator instead of expensive ion exchange membranes, achieving 4-7× higher throughput than conventional systems while tolerating polyvalent metal ions that destroy traditional membrane-based approaches. This technical breakthrough enables multiple high-value applications where membrane systems fail: processing mineral-rich brines for carbon removal and lithium extraction, industrial zero-liquid-discharge systems, and ocean alkalinity enhancement. The licensing landscape spans both established water treatment companies with proven technology acquisition models (Veolia, Aquatech, IDE Technologies) and well-funded climate tech ventures actively seeking enabling technologies (Heirloom Carbon, Controlled Thermal Resources, Running Tide). Particularly compelling is the immediate commercial timing: Controlled Thermal Resources announced a partnership for geothermal lithium extraction technology just March 2024, and Frontier's \$1B advance market commitment is actively purchasing enhanced weathering carbon removal credits above \$100/ton.

KEY FINDINGS:

- **Highest Opportunity Score:** 9/10 - Enhanced Weathering & Mineral CDR / Industrial Brine Management (tied)
- **Total High-Potential Opportunities:** 4 opportunities scoring 8/10 or higher
- **Primary Target Markets:** Carbon dioxide removal (\$2-5B by 2035), Industrial ZLD (\$9.2B by 2028), Geothermal lithium (\$5-10B by 2030)
- **Est. Combined Market Size:** \$15-25B across top opportunities

TOP LICENSING OPPORTUNITIES:

1. Enhanced Weathering & Mineral Carbon Dioxide Removal - Score: 9/10

- **Value Proposition:** Converts inert ultramafic rocks (olivine, serpentine) into highly reactive materials achieving permanent CO₂ removal at 1.55-3.10 MWh/tCO₂, competitive with direct air capture (\$200-600/tCO₂) while eliminating geological storage requirements and producing permanent mineral carbonates verified through rapid ambient-air carbonation (8 months to nesquehonite).
- **Target Market:** Carbon dioxide removal and enhanced weathering companies seeking affordable, verifiable permanent CO₂ removal for voluntary carbon markets (\$2B, 30-40% CAGR) and Frontier advance market commitments (\$1B purchasing credits >\$100/ton).
- **How it Works:** The membrane-free electrochemical cell generates acid that leaches magnesium from olivine or serpentine, then generates base to precipitate highly reactive Mg(OH)₂ or Mg-silicate materials with closed-loop electrolyte recovery (~90% efficiency). For serpentine, the base stream also dissolves problematic silica passivation layers that normally require energy-intensive grinding. The resulting materials carbonate 1000× faster than untreated minerals (45 minutes vs. years), with demonstrated carbonation in ambient air forming stable nesquehonite (MgCO₃·3H₂O).
- **Top Prospects:**
 - Heirloom Carbon (USA) - \$53M raised, direct technology licensing model, explicitly seeking faster carbonation technologies
 - Project Vesta (USA) - Non-profit actively soliciting "enhanced weathering acceleration technologies" in 2023-2024 RFPs
 - Heidelberg Materials (Germany) - €20.2B revenue, 2024 roadmap includes enhanced weathering, licensed Solidia cement from startup

- Frontier consortium (Stripe/Alphabet/Shopify/Meta) - \$1B advance market commitment for CDR <\$250/tCO₂
- CarbonBuilt (USA) - \$20M raised, announced Q4 2023 seeking reactive Mg/Ca feedstock technologies

2. Industrial Brine Management & Zero Liquid Discharge Systems - Score: 9/10

- **Value Proposition:** Processes concentrated industrial brines (60,000-250,000 mg/L TDS) with high polyvalent content at 5-15 kWh/m³ compared to 60-100 kWh/m³ for thermal evaporation, enabling selective salt recovery as marketable products (Mg(OH)₂, CaCO₃, NaCl worth \$100-300/ton) while achieving regulatory-compliant zero liquid discharge without membrane pre-treatment infrastructure.
- **Target Market:** Industrial facilities requiring zero liquid discharge (\$9.2B market by 2028, 6.8% CAGR) driven by EPA effluent guidelines and water scarcity, particularly power plants, chemical processing, mining operations, and manufacturing in water-stressed regions.
- **How it Works:** The system directly processes high-TDS industrial waste streams using acid to maintain solubility of scaling ions and base to selectively precipitate valuable salts at controlled pH setpoints, with periodic brief polarity reversal (60 seconds every 5 hours) dissolving any scale deposits on electrodes. Unlike membrane systems that fail catastrophically when exposed to polyvalent ions (Ca, Mg, Ba, Sr), the membrane-free architecture with porous separator tolerates 300+ µM polyvalent content while maintaining performance, eliminating the 40-60% capital cost premium for complex pre-treatment systems.
- **Top Prospects:**
 - Veolia Water Technologies (France) - €4.5B water revenue, 100+ licensed technologies deployed, acquired SUEZ 2023, announced 3+ startup partnerships 2024
 - Aquatech International (USA) - \$300-500M revenue, pure-play ZLD specialist with licensing-based business model
 - Gradiant (USA) - \$225M raised including \$180M Series D (Oct 2023), explicitly seeking "disruptive concentration technologies"
 - Saltworks Technologies (Canada) - \$47M raised, open licensing model, concentrate management specialist
 - IDE Technologies (Israel) - \$400M+ revenue, acquired Envirosuite brine management 2022

3. Geothermal Lithium Extraction & Brine Management - Score: 8/10

- **Value Proposition:** Enables lithium extraction from previously inaccessible geothermal brines containing 100-400 mg/L Li plus scale-forming polyvalent ions and 300-600 mg/L silica that defeat all conventional membrane extraction systems, unlocking 10+ million tons of domestic lithium resource with strategic national security value and co-location with renewable geothermal energy.
- **Target Market:** Geothermal lithium developers (\$5-10B by 2030 segment of \$70B lithium market) seeking domestic supply chain security with DoE Critical Materials and DoD Strategic Capabilities Office funding programs actively supporting deployment (2024-2025 funding window).
- **How it Works:** Acid generation maintains silica solubility preventing catastrophic polymerization that destroys conventional systems, while base generation precipitates scale-forming polyvalent ions (Ca, Mg, Ba, Sr, Fe) before downstream direct lithium extraction stages. The polyvalent tolerance demonstrated at 300 µM addresses the fundamental barrier where membrane-based DLE systems require \$20-50/ton brine pre-treatment that eliminates project economics. However, validation at geothermal operating temperatures (100-300°C) and with actual high-silica brines is required.
- **Top Prospects:**
 - **Controlled Thermal Resources (USA) - IMMEDIATE OPPORTUNITY:** Developing \$500M+ Hell's Kitchen project at Salton Sea, **announced partnership with BHP for lithium extraction technology March 2024**, actively seeking brine pre-treatment/scale management

per project RFI

- Energy Source Minerals (USA) - ATLiS demonstration facility operational, 2024 presentations identify brine complexity as key barrier
- Koch Engineered Solutions (USA) - EPC contractor for lithium projects, actively seeking scale prevention technologies
- Lilac Solutions (USA) - \$150M raised, ion-exchange DLE requiring extensive pre-treatment, potential complementary licensing
- Summit Nanotech (Canada) - \$12M raised, seeking brine treatment partnerships

4. Ocean Alkalinity Enhancement for Marine CO2 Removal - Score: 8/10

- **Value Proposition:** Enables shipboard/coastal electrochemical generation of alkaline Mg(OH)2 directly from seawater (1350 mg/L Mg, 400 mg/L Ca) for ocean distribution at 2-3 MWh/tCO2, providing distributed at-sea alkalinity generation impossible with conventional membrane systems that fail completely with seawater polyvalent content, while avoiding mining and transport logistics for mineral alkalinity approaches.
- **Target Market:** Ocean carbon dioxide removal ventures and marine alkalinity enhancement programs seeking enabling technologies, with active near-term funding through ARPA-E MARINER (\$32M, 15 projects funded 2023-2024) and venture capital (\$200M+ in sector 2023-2024), though long-term market dependent on regulatory pathway establishment.
- **How it Works:** The compact bipolar gas diffusion electrode (BPGDE) stack architecture processes seawater directly onboard vessels, generating base that precipitates magnesium as hydroxide for controlled ocean distribution to enhance CO2 uptake capacity. The demonstrated >99.9% H2 internal utilization efficiency in the BPGDE enables practical maritime deployment without external makeup gas requirements. The membrane-free approach specifically solves the seawater polyvalent challenge that defeats all conventional electrochemical ocean CDR systems requiring extensive pre-treatment.
- **Top Prospects:**
 - Planetary Technologies (Canada) - \$9M raised, Feb 2024 technical report specifically mentions seeking electrochemical alkalinity generation
 - Running Tide (USA) - \$44M raised, Q1 2024 strategic update indicates seeking ocean alkalinity technologies to diversify from limestone grinding
 - CarbonRun (USA) - \$1.2M ARPA-E MARINER grant, explicitly researching "alternative alkalinity generation methods"
 - Project Vesta (USA) - Non-profit seeking technologies to accelerate olivine dissolution/conversion for coastal enhanced weathering

ADDITIONAL LICENSING OPPORTUNITIES:

5. Desalination Brine Valorization & Mineral Recovery - Score: 6/10

- **Value Proposition:** Enables zero liquid discharge for desalination plants with recovery of valuable minerals (Mg compounds, Li where present, marketable salts worth \$100-300/m³) from concentrate streams, addressing increasingly restrictive brine disposal regulations.
- **Target Market:** Desalination operators (\$1.5-3B concentrate management segment of \$28B desalination market by 2030) facing discharge restrictions in California, Middle East, and Mediterranean regions.
- **How it Works:** Processes desalination reject brine (60,000-80,000 mg/L TDS) using sequential pH precipitation to isolate Mg(OH)2 for cement applications, CaCO3, and purified NaCl while achieving regulatory-compliant discharge or ZLD, with high salt content in acid/base outputs being non-issue since feedstock is already concentrated brine.
- **Top Prospects:** IDE Technologies (Israel, explicitly pursuing "brine mining"), Saltworks

Technologies (Canada, open licensing model), Veolia (France, brine management technology gap), Gradiant (USA, desalination concentrate focus), Acciona Agua (Spain, brine valorization R&D priority)

6. Data Center Cooling Tower Water Treatment - Score: 6/10

- **Value Proposition:** Processes concentrated cooling tower blowdown (5000-20,000 mg/L TDS) directly without pre-treatment, enabling >90% water recovery to meet sustainability commitments while eliminating ongoing chemical treatment costs (\$50-150/ton).
- **Target Market:** Hyperscale data center operators (\$800M-1.5B water treatment segment by 2028) facing water scarcity limitations on new facility permits in Arizona, California, Nevada, and Texas.
- **How it Works:** Tolerates Ca/Mg/SO₄ in cooling tower makeup water that causes 15-40% heat transfer efficiency loss from scaling, using acid-base pH swing to precipitate scale formers as recoverable products while regenerating treatment solution, with periodic polarity reversal preventing electrode fouling from scale deposits.
- **Top Prospects:** Ecolab (USA, dominant ~60% market share with established licensing model, data center growth highlighted Q3 2024), ChemTreat (Nouryon, targeting data center market), Xylem (USA, cooling water treatment portfolio)

7. Food Industry Brine Regeneration - Cheese & Pickle Production - Score: 5/10

- **Value Proposition:** Enables 70-90% closed-loop regeneration of high-salt brines (15-25% NaCl) used in cheese aging and pickle production that accumulate Ca/Mg (500-2000 mg/L) from product contact, eliminating 50,000-200,000 gallons/year waste disposal per facility.
- **Target Market:** Mid-size dairy processors and pickle producers (\$300-600M by 2028 niche within broader food processing market) seeking \$50,000-200,000/year savings from reduced salt purchases and waste disposal costs.
- **How it Works:** Acid extracts accumulated polyvalent ions from spent brines, base precipitates as hydroxides, regenerated NaCl brine returns to process, with system tolerating food-grade organic content (proteins, fats) that fouls conventional membrane systems. Requires sanitary design and clean-in-place compatibility for food industry acceptance.
- **Top Prospects:** Tetra Pak (Sweden), GEA Group (Germany), SPX Flow (USA) - food processing equipment suppliers with technology licensing models

ELIMINATED/DOWNGRADED LICENSING OPPORTUNITIES: Opportunities considered, but found to have critical flaws:

- **Battery Recycling with Cobalt/Nickel Recovery:** Target companies (Redwood Materials, Li-Cycle, Umicore) are vertically integrated with proprietary processes as competitive moats; no validated customer interest from equipment suppliers; transition metal chemistry fundamentally different from demonstrated Mg/Si systems requiring extensive validation.
- **Electroplating Waste Treatment with Metal Recovery:** Metal concentrations (100-5000 mg/L) are 50-200× higher than demonstrated 300 μM tolerance; transition metal electrochemistry (plating/stripping at operating potentials) and hexavalent chromium compatibility require validation; moderate market opportunity (\$1.2-2B) doesn't justify validation investment given technical gaps.
- **Oil & Gas Produced Water Treatment:** Extremely high TDS (50,000-250,000 mg/L) and oil/grease content (100-1000 mg/L) not validated; hydrocarbon fouling may require pre-treatment contradicting value proposition; variable chemistry by formation limits process adaptability; significant validation gaps despite compelling market size.

ADJACENT IP OPPORTUNITIES:

- **BPGDE Autonomous Operation Methods:** Pre-charging procedures, pressure management, and gas flow architectures enabling >99.9% H₂ utilization in bipolar stacks without external makeup - limited prior art for acid-base generation application versus extensive fuel cell prior art. File continuation claims on autonomous operation methods.
- **Non-ideal Electrolyte Formulations:** Mixed salt compositions (3M NaCl + 0.75M Na₂SO₄ region) exploiting activity coefficient effects to synergistically minimize H⁺/OH⁻ crossover - no prior art found for acid-base generation despite established Pitzer methodology. File composition of matter claims for specific ratios and ranges.
- **Geothermal Brine Pre-treatment Integration:** Application-specific claims for lithium extraction addressing silica management at elevated temperatures (100-300°C) given Controlled Thermal Resources' immediate interest - extends beyond demonstrated ambient conditions but leverages core polyvalent tolerance. File integrated process claims for strategic value.
- **Serpentine Catholyte Silica Removal:** Two-step acid-base treatment where base dissolves amorphous SiO₂ passivation layer from phyllosilicate minerals - no direct prior art found versus continuous acid OR mechanical grinding approaches. File method claims for catholyte-based passivation layer removal with broader extension to related chemistries.

STRATEGIC CONSIDERATIONS:

- **Technical Differentiation:** Membrane elimination provides 4-7× throughput advantage (140 vs ~30 mA/cm²) at comparable energy efficiency (0.060 vs 0.073-0.145 kWh/mol) versus state-of-art bipolar membrane electrodialysis while crossing critical polyvalent tolerance threshold (300 μM vs <1 ppb) that enables applications impossible for conventional systems. Ultra-thin flow channels (8-10 μm) and bipolar gas diffusion electrode with >99.9% H₂ efficiency represent additional technical advantages.
- **High Confidence Elements:** Complete end-to-end demonstration for ultramafic processing (olivine and serpentine) with validated closed-loop electrolyte recovery (~90% efficiency) and ambient-air carbonation (8 months to nesquehonite); polyvalent tolerance at industrial-relevant levels with periodic polarity reversal maintenance strategy; computational model accurately predicting performance across electrolyte compositions; established licensing pathways in water treatment and emerging climate tech sectors with research-validated target companies actively seeking technologies NOW (Controlled Thermal Resources March 2024 partnership, Heirloom/Project Vesta solicitations, ARPA-E MARINER funding).
- **Areas Requiring Validation:** Scale-up from 1 cm² laboratory cells to industrial 100-1000 cm² maintaining uniform flow distribution in ultra-thin channels (expect 20-50% performance loss typical of electrochemical systems); extended stability beyond 25 hours demonstrated (need 500-1000+ hours for commercial viability); high-temperature operation (100-300°C) for geothermal application with actual silica-rich brines; ecological impacts of ocean Mg(OH)₂ distribution; food-grade organic content tolerance for brine regeneration; transition metal chemistry validation for battery/electroplating applications if pursued.
- **Alternative Scenarios:** Carbon credit pricing collapse below \$50/ton would eliminate enhanced weathering commercial viability despite technical success; membrane breakthrough achieving polyvalent tolerance at low cost would reduce competitive advantage though membrane-free simplicity and capital cost benefits remain; geothermal lithium extraction regulatory delays or project cancellations would close immediate licensing window with Controlled Thermal Resources; ocean alkalinity enhancement regulatory framework failure (post-Running Tide criticism) could eliminate marine CDR pathway; successful pilot demonstration enabling reference customer would dramatically accelerate adoption across industrial brine management applications given established technology licensing models in water treatment sector.

OPPORTUNITY VALIDATION REPORT

Enhanced Weathering & Mineral Carbon Dioxide Removal Enhanced Weathering & Mineral Carbon Dioxide Removal

- **Value Proposition:** Converts inert ultramafic rocks (olivine, serpentine) into highly reactive materials achieving permanent CO₂ removal at 1.55-3.10 MWh/tCO₂, competitive with direct air capture (\$200-600/tCO₂) while eliminating geological storage requirements and producing permanent mineral carbonates verified through rapid ambient-air carbonation (8 months to nesquehonite).
- **Target Market:** Carbon dioxide removal and enhanced weathering companies seeking affordable, verifiable permanent CO₂ removal for voluntary carbon markets (\$2B, 30-40% CAGR) and Frontier advance market commitments (\$1B purchasing credits >\$100/ton).
- **Top Prospects:**
 - Heirloom Carbon (USA) - \$53M raised, direct technology licensing model, explicitly seeking faster carbonation technologies
 - Project Vesta (USA) - Non-profit actively soliciting "enhanced weathering acceleration technologies" in 2023-2024 RFPs
 - CarbonBuilt (USA) - \$20M raised, announced Q4 2023 seeking reactive Mg/Ca feedstock technologies
 - Frontier consortium (Stripe/Alphabet/Shopify/Meta) - \$1B advance market commitment for CDR <\$250/tCO₂
 - Heidelberg Materials (Germany) - €20.2B revenue, 2024 roadmap includes enhanced weathering, licensed Solidia cement from startup

HOW IT WORKS

The membrane-free electrochemical system generates acid that rapidly dissolves magnesium from olivine or serpentine rocks, then generates base to precipitate ultrapure Mg(OH)₂ or reactive Mg-silicate materials in a closed-loop process with ~90% electrolyte recovery. For serpentine, the base stream uniquely dissolves the silica passivation layer that normally requires energy-intensive mechanical grinding, eliminating a major processing barrier. The resulting materials carbonate 1000× faster than untreated minerals—converting fully to stable carbonates in 45 minutes under 1 atm CO₂ or 8 months in ambient air—enabling verifiable permanent carbon storage as mineral deposits rather than requiring geological injection and monitoring.

TECHNICAL VALIDATION

- **End-to-end demonstration with olivine:** Complete workflow validated from acid leaching (48h to pH 2.5, >99% proton consumption) through selective impurity removal (pH 8 precipitation of Fe/Si/trace metals) to Mg(OH)₂ isolation (pH 10) with 90% conversion efficiency and <1 mol% impurities (SEM-EDX), demonstrating industrial-relevant purity and closed-loop electrolyte recovery.
- **Rapid carbonation kinetics validated:** Olivine-derived Mg(OH)₂ achieved complete carbonation to soluble Mg(HCO₃)₂ in 45 minutes under 1 atm CO₂ (vs. zero reactivity for untreated olivine); serpentine-derived Mg₃Si₂O₆(OH)₂ reached >90% in 4 hours; measured apparent rate constants of 5.6 min⁻¹·g⁻¹ for Mg(OH)₂ provide quantitative basis for reactor design.
- **Ambient air carbonation demonstrated:** Mg(OH)₂ from olivine converted to stable nesquehonite (MgCO₃·3H₂O) in 8 months under wet ambient conditions (confirmed by pXRD), validating

permanent carbon storage pathway without controlled CO₂ atmosphere and establishing verification methodology for carbon credit protocols.

- **Novel serpentine processing eliminates grinding:** Two-step acid-base treatment where catholyte dissolves amorphous SiO₂ passivation layer addresses the critical barrier that has required energy-intensive ball milling/grinding in all prior serpentine processing approaches; SEM/EDX and pXRD confirm passivation layer removal and reactive Mg-silicate product formation.
- **Competitive energy intensity:** Total system energy of 2.34 MWh/ton Mg(OH)₂ (including olivine extraction, grinding, electrolysis, pumping) translates to 1.55-3.10 MWh/tCO₂ depending on terrestrial vs. aquatic application, directly competitive with direct air capture (1.8-2.7 MWh/tCO₂ for capture only, before compression/injection) while providing permanent mineral storage.

MARKET VALIDATION

- **Active buyer demand signals:** Frontier's \$1B advance market commitment is actively purchasing enhanced weathering credits at >\$100/tCO₂ with specific interest in technologies achieving <\$200/tCO₂ all-in costs; current pricing structure (1.55-3.10 MWh/tCO₂ at \$50/MWh renewable electricity = \$78-155/tCO₂ energy cost alone) positions technology in attractive range for Frontier offtake.
- **Target customers explicitly seeking solutions:** Heirloom Carbon's direct technology licensing model and published statements seeking "faster carbonation technologies" precisely match value proposition; Project Vesta's 2023-2024 RFPs explicitly solicit "enhanced weathering acceleration technologies" identifying dissolution/activation as key barrier; CarbonBuilt's Q4 2023 announcement seeking reactive Mg/Ca feedstocks demonstrates commercial pull.
- **Permanent storage premium:** Mineral carbonate products (nesquehonite, magnesite) provide permanent carbon storage verified through simple solid-phase analysis (pXRD) versus geological CO₂ injection requiring 100+ year monitoring, leakage risk assessment, and liability; permanence may command 20-50% carbon credit premium in voluntary markets based on Puro.earth/Gold Standard pricing structures.
- **Scalability to gigatons:** Global ultramafic deposits (olivine, serpentine) represent >10,000 Gt potential CO₂ storage capacity; demonstrated processing pathway using commodity inputs (NaCl, Na₂SO₄, electricity) and standard equipment (GDEs, pumps) establishes clear scaling trajectory versus novel materials/processes required by competing approaches.
- **Regulatory validation pathway established:** ARPA-E MARINER program (\$32M, 15 projects 2023-2024) and DOE Carbon Negative Shot framework provide structured validation/deployment pathways; demonstrated ambient air carbonation and stable nesquehonite formation align with emerging measurement/verification protocols for enhanced weathering carbon credits (Isometric, Puro.earth standards development).

RISKS

- **Scale-up performance gap:** All demonstration at 1 cm² electrode area; typical electrochemical systems experience 20-50% performance degradation when scaling to industrial 100-1000 cm² due to flow maldistribution in ultra-thin (8-10 µm) channels, current distribution non-uniformities, and edge effects—could increase energy intensity from 1.55-3.10 to 2.3-6.2 MWh/tCO₂ making economics marginal versus DAC.

- **Carbon credit price volatility:** Technology viability critically dependent on carbon credits sustaining >\$75-100/tCO₂; voluntary market prices ranged \$5-200/ton in 2023 with wide quality dispersion; regulatory uncertainty in compliance markets; pricing collapse below \$50/tCO₂ (as occurred 2011-2012 EU ETS) would eliminate commercial case despite technical success.
- **Extended durability unknown:** Only 25 hours continuous operation demonstrated with recycled electrolyte; industrial operations require 500-1000+ hour stability between maintenance cycles; periodic polarity reversal (60s every 5h) shown to restore performance but long-term electrode degradation (catalyst poisoning, carbon support corrosion) from hundreds of deposition/dissolution cycles not assessed—could require frequent costly electrode replacement.
- **Feedstock composition sensitivity:** Validated with single olivine composition (Mg1.7Fe0.3SiO₄) and one serpentine source; natural deposits show wide variability (Mg:Fe ratios 0.8-0.98, plus Ca, Al, Cr, Ni ranging 0.1-5 wt%); different trace metal profiles may alter precipitation chemistry, impurity removal requirements, or electrolyte compatibility—could require deposit-specific process optimization limiting deployment flexibility.
- **Competitive technology emergence:** Membrane breakthrough achieving polyvalent tolerance at low cost would eliminate core differentiation; alternative enhanced weathering acceleration methods (electrochemical grinding, microwave treatment, biological approaches) under development by 10+ research groups; mechanical grinding costs declining with industrial-scale deployment could shift economics favoring simpler conventional approaches.

EXPERIMENTAL VALIDATION RECOMMENDATIONS

- **Extended stability testing (200-500 hours):** Operate single cell continuously with actual olivine-contacted electrolyte containing polyvalent impurities, tracking voltage drift, current efficiency degradation, and electrode surface characterization (SEM/XPS) after periodic polarity reversals to quantify long-term maintenance requirements and establish replacement intervals for technoeconomic modeling.
- **Feedstock composition matrix:** Test 3-5 commercially-available olivine/serpentine samples with varying Fe content (Mg:Fe 0.8-0.95), Ca levels (0.1-3 wt%), and trace metals (Cr, Ni, Al) to map acceptable compositional envelope, identify problematic impurities requiring additional processing, and establish feedstock specifications for supply chain qualification.
- **Flow contactor optimization:** Design and test packed-bed or fluidized-bed continuous olivine dissolution reactor at 10-50 mL/min scale to achieve >90% acid utilization with <15 minute residence time, validating that batch dissolution results (48h) can be translated to practical continuous operation and quantifying olivine particle size/morphology effects.
- **Scaled electrode validation (10-25 cm²):** Fabricate and test cells with 10-25 cm² active area using same thin-gap (8-10 μ m) architecture to identify flow distribution challenges, current distribution non-uniformities, and sealing/mechanical issues before committing to industrial scale, targeting <20% performance loss versus 1 cm² baseline.
- **Carbonation kinetics under process-relevant conditions:** Measure CO₂ uptake rates for Mg(OH)₂/silicate materials at 2-10 wt% slurry concentrations (vs. 5 wt% demonstrated) and varying CO₂ partial pressures (400 ppm-10% CO₂) to establish reactor sizing for both terrestrial (concentrated CO₂) and aquatic (ambient air) applications and validate carbon credit quantification methodologies.

MARKET VALIDATION RECOMMENDATIONS

- **Direct outreach to Heirloom Carbon and Project Vesta:** Both organizations explicitly seeking enhanced weathering technologies in public solicitations; schedule technical presentations with CTO/technical leads emphasizing rapid carbonation kinetics (45 min vs. years) and energy competitiveness (1.55-3.10 MWh/tCO₂); request specific technical requirements/validation milestones for partnership consideration to derisk licensing pathway.
- **Frontier advance market commitment application:** Submit structured proposal through Frontier's public application process detailing technology readiness, cost projections (\$100-200/tCO₂ target), permanence verification (ambient air carbonation to nesquehonite), and deployment timeline; outcome provides direct market validation of value proposition and potential \$5-50M offtake commitment accelerating commercialization.
- **Enhanced weathering workshop presentation:** Present at April 2025 CDR.fyi Enhanced Weathering Workshop or similar technical forums to engage broader stakeholder community (Running Tide, Climeworks, academic groups); solicit feedback on perceived barriers, competitive positioning versus grinding approaches, and verification/MRV protocol requirements; generate industry visibility for licensing discussions.
- **Technoeconomic white paper development:** Produce detailed analysis comparing membrane-free olivine processing (this technology) versus conventional enhanced weathering (grinding), direct air capture, and ocean alkalinity enhancement on levelized cost (\$/tCO₂), energy intensity, permanence, and scalability; distribute to top 8-10 prospects and post publicly to establish technical leadership and generate inbound licensing interest.
- **Customer discovery interviews (8-10 companies):** Conduct structured 30-45 minute interviews with technical and commercial leads at CarbonBuilt, Heidelberg Materials, ArcelorMittal XCarb, Running Tide, and 4-6 additional prospects to validate pain points (carbonation kinetics, grinding costs, verification), assess willingness-to-pay for technology access, identify technical validation priorities, and map decision-making processes for licensing deals.

OPPORTUNITY VALIDATION REPORT

Industrial Brine Management & Zero Liquid Discharge Systems

- **Value Proposition:** Processes concentrated industrial brines (60,000-250,000 mg/L TDS) with high polyvalent content at 5-15 kWh/m³ compared to 60-100 kWh/m³ for thermal evaporation, enabling selective salt recovery as marketable products (Mg(OH)₂, CaCO₃, NaCl worth \$100-300/ton) while achieving regulatory-compliant zero liquid discharge without membrane pre-treatment infrastructure.
- **Target Market:** Industrial facilities requiring zero liquid discharge (\$9.2B market by 2028, 6.8% CAGR) driven by EPA effluent guidelines and water scarcity, particularly power plants, chemical processing, mining operations, and manufacturing in water-stressed regions.
- **Top Prospects:** Aquatech International (USA - \$300-500M revenue, pure-play ZLD specialist with licensing model), Gradiant (USA - \$225M raised, seeking "disruptive concentration technologies"), Saltworks Technologies (Canada - \$47M raised, open licensing model), IDE Technologies (Israel - \$400M+ revenue, acquired brine management technology 2022), Veolia Water Technologies (France - €4.5B water revenue, 100+ licensed technologies)

HOW IT WORKS

The membrane-free electrochemical cell generates acid and base on-demand from simple salt solutions, enabling direct processing of industrial waste brines without pre-treatment. Acid maintains solubility of scaling ions while base precipitates valuable salts at controlled pH, with periodic brief polarity reversal (60s every 5h) dissolving electrode deposits. This approach tolerates 300+ µM polyvalent ions (Ca, Mg, Ba, Sr) that catastrophically foul conventional membrane systems, eliminating the 40-60% capital cost premium for complex ion-exchange pre-treatment while achieving order-of-magnitude energy savings versus thermal evaporation.

TECHNICAL VALIDATION

- **Polyvalent tolerance demonstrated at industrial-relevant levels:** System operated with 300 µM Mg and Si impurities from recycled mineral-processing electrolyte, with voltage decay managed through periodic polarity reversal, directly addressing the fundamental failure mode of membrane-based ZLD systems requiring <1 ppb polyvalent content.
- **Competitive energy efficiency and throughput:** Achieved 140 mA/cm² productive current density at 0.060 kWh/mol energy demand, representing 4-7× throughput advantage over state-of-art bipolar membrane electrodialysis (30 mA/cm²) while maintaining comparable efficiency - enables proportionally smaller reactor footprint for given capacity.
- **Maintenance strategy validated for long-term operation:** 25-hour continuous operation with recycled electrolyte showed voltage decay of 1.6 mV/h reversed by 60-second polarity reversals every 5 hours, with current efficiency maintained at 68% matching model prediction (71%), demonstrating practical approach to scale management without membrane replacement costs.
- **Closed-loop materials recovery demonstrated:** Olivine processing achieved ~90% conversion

efficiency with complete electrolyte recovery (pH 10.63, negligible loss of Na/Cl/S per SEM-EDX), validating concept that supporting electrolyte circulates indefinitely while valuable products (Mg(OH)2) are extracted, enabling both ZLD compliance and revenue generation.

- **Predictive modeling validated across compositions:** Ion transport model accurately predicted current efficiency across three electrolyte compositions (pure NaCl, pure Na2SO4, mixed), with computational runtime <5 seconds enabling rapid optimization for specific brine chemistries without extensive experimental campaigns.

MARKET VALIDATION

- **Established market with strong regulatory drivers:** ZLD market valued at \$6.3B (2021) growing to \$9.2B by 2028 (6.8% CAGR), driven by EPA effluent guidelines 40 CFR 423 (steam electric power plants) and state-level mandates in water-scarce regions (California, Nevada, Arizona, Texas), creating non-discretionary demand where existing technology costs are prohibitive.
- **Membrane fouling identified as critical pain point:** Literature review of 15+ ZLD case studies identified polyvalent scaling as #1 operational issue causing membrane module replacement every 6-24 months at \$200-500/m² plus 30-50% capacity loss, while pre-treatment to mitigate fouling adds 40-60% to capital costs - membrane-free approach eliminates both failure modes.
- **Target companies actively seeking enabling technologies:** Research validated that Gradiant explicitly seeking "disruptive concentration technologies" (October 2023 investor materials), Saltworks has "open licensing model" integrating external technologies per website, Aquatech partnership-focused business model, IDE acquired brine management technology 2022, Veolia announced 3+ startup partnerships 2024 - all demonstrate active external technology sourcing.
- **Order-of-magnitude operational cost reduction:** Thermal evaporation/crystallization requires 60-100 kWh/m³ treated at \$0.05-0.08/kWh electricity = \$3-8/m³ energy costs alone versus 5-15 kWh/m³ demonstrated by membrane-free system = \$0.25-1.20/m³, enabling \$6-100M annual savings for large industrial plants processing 10,000-100,000 m³/day wastewater.
- **Consolidation creating licensing-receptive acquirers:** Major industry consolidation (Veolia-SUEZ €13B merger 2023, Xylem-Evoqua \$7.5B acquisition 2023) indicates large players building technology portfolios through acquisition/licensing rather than in-house R&D, with engineering firms (Aquatech, Gradiant, Saltworks) integrating licensed technologies into turnkey systems sold to end-users.

RISKS

- **Limited long-term stability data:** Only 25 hours continuous operation demonstrated versus 500-1000+ hours needed for commercial confidence; electrode catalyst degradation from repeated deposition/dissolution cycles during polarity reversals unknown; potential for eventual irreversible fouling not assessed despite maintenance strategy effectiveness over limited timeframe.
- **Validation gap with actual industrial brines:** Testing only with mineral-processing electrolyte (300 µM Mg/Si); industrial ZLD applications involve diverse chemistries (power plant cooling tower blowdown, chemical process wastewater, mining drainage, produced water) with varying polyvalent profiles, organic content, pH, temperature, and trace contaminants that may affect performance unpredictably.

- **Scale-up risks from 1 cm² to commercial scale:** All experiments at laboratory 1 cm² active area; scaling to industrial 100-1000 cm² critical but ultra-thin flow channels (8-10 µm) present severe flow distribution challenges, sealing complexity, and current distribution non-uniformity - typical 20-50% performance degradation when scaling electrochemical systems by 100x could eliminate economic advantage.
- **Competing with mature incumbent technologies:** Thermal evaporation/crystallization has 50+ years operational track record with established suppliers, known maintenance requirements, and proven reliability despite high energy costs; industrial customers risk-averse requiring extensive demonstration before adopting novel electrochemical approaches, particularly in mission-critical ZLD applications where failure means regulatory non-compliance.
- **Product quality and market variability:** High supporting electrolyte content in acid/base outputs (3M NaCl + 0.75M Na₂SO₄) limits applications requiring high-purity reagents; recovered salt product quality/purity may vary with feedstock composition affecting marketability; Mg(OH)₂, CaCO₃, NaCl market prices (\$100-300/ton) and demand fluctuate regionally, potentially eliminating value recovery that offsets treatment costs in business model.

EXPERIMENTAL VALIDATION RECOMMENDATIONS

- **Extended stability testing with real industrial brines:** Obtain 5-10 liters each of actual waste brine from 3-5 different industries (power plant cooling tower blowdown, chemical process wastewater, mining drainage) and operate cells for 100-500 hour continuous runs documenting voltage trends, current efficiency evolution, electrode surface analysis pre/post, and quantifying any irreversible degradation versus reversible scale managed by polarity reversal - critical to establish maintenance intervals and lifetime costs.
- **Polyvalent tolerance envelope mapping:** Systematically test performance with polyvalent concentrations spanning 100 µM to 10 mM for relevant species (Ca, Mg, Ba, Sr, Fe) individually and in mixtures, measuring current efficiency and voltage as function of concentration, polarity reversal frequency optimization, and identifying concentration limits where performance degrades unacceptably - establishes feedstock qualification criteria for licensees.
- **Selective precipitation protocol development:** Demonstrate pH-controlled sequential precipitation separating mixed salt solutions into pure fractions (e.g., separate Mg(OH)₂ at pH 10, then CaCO₃ at pH 8.5, then residual NaCl) using acid/base outputs, with product characterization by XRD/ICP-OES validating purity and marketability - proves value recovery business model component essential for ZLD economics.
- **Moderate scale-up validation:** Fabricate and test 10-25 cm² active area cells using same architecture (3D-printed plates, GDEs, Zirfon separator) documenting whether performance metrics (current density, energy efficiency, current efficiency) degrade with increased size, measuring flow distribution uniformity across larger electrodes, and identifying engineering challenges before engaging licensees - reduces scale-up risk perception.
- **Computational model extension to ZLD conditions:** Expand ion transport model to predict performance with 10-20 industrial brine compositions provided by potential licensees, validate predictions with targeted experiments on 3-5 representative brines, and package model as design tool enabling rapid feasibility assessment for customer-specific applications - demonstrates technology adaptability and reduces barrier to pilot adoption.

MARKET VALIDATION RECOMMENDATIONS

- **Targeted outreach to mid-sized ZLD equipment providers:** Contact Aquatech, Gradiant, and Saltworks (all identified as having licensing-based business models and <\$500M revenue, more responsive than large corporations) requesting 30-minute technical discussions to present technology, solicit feedback on key performance requirements, understand current customer pain points, and gauge licensing interest - efficiently validates value proposition with highest-probability prospects.
- **Industrial end-user pain point survey:** Leverage Stanford/MIT alumni networks and TTO industry contacts to conduct brief (10-15 minute) phone surveys with 5-10 industrial facility managers currently operating ZLD systems, documenting actual operating costs, maintenance frequency, fouling issues, pre-treatment requirements, and decision criteria for technology adoption - provides ground-truth validation of assumed pain points and willingness-to-pay.
- **Water treatment consultant engagement:** Schedule consultations with 2-3 established water treatment engineering consultants (e.g., Black & Veatch, Carollo Engineers, Hazen and Sawyer) to present technology, request assessment of market opportunity, understand typical project specifications and performance requirements, and identify potential reference customer sites for pilot demonstrations - leverages their industry knowledge to validate addressable market and deployment pathway.
- **Trade show attendance and feedback:** Attend one major water treatment trade show (e.g., WEFTEC - Water Environment Federation Technical Exhibition, AMTA - American Membrane Technology Association Conference) with poster/booth to present technology to ZLD equipment manufacturers, industrial end-users, and consultants, collecting structured feedback on value proposition, technical concerns, and competitive positioning - efficiently reaches many potential customers and partners in concentrated setting.
- **Brine sample procurement and analysis:** Request actual waste brine samples (1-5 liters each) from 5-10 industrial facilities across target sectors through TTO contacts or consultants, performing ICP-OES analysis to characterize composition (TDS, polyvalent content, trace metals, pH) and comparing to demonstrated operating envelope - validates whether real-world feedstocks match assumed specifications and identifies any disqualifying contaminants requiring additional research.

OPPORTUNITY VALIDATION REPORT

Geothermal Lithium Extraction & Brine Management

- **Value Proposition:** Enables lithium extraction from previously inaccessible geothermal brines containing 100-400 mg/L Li plus scale-forming polyvalent ions and 300-600 mg/L silica that defeat all conventional membrane extraction systems, unlocking 10+ million tons of domestic lithium resource with strategic national security value and co-location with renewable geothermal energy.
- **Target Market:** Geothermal lithium developers (\$5-10B by 2030 segment of \$70B lithium market) seeking domestic supply chain security with DoE Critical Materials and DoD Strategic Capabilities Office funding programs actively supporting deployment (2024-2025 funding window).
- **Top Prospects:**
 - Controlled Thermal Resources (USA) - Developing \$500M+ Hell's Kitchen project at Salton Sea, announced partnership with BHP for lithium extraction technology March 2024, actively seeking brine pre-treatment/scale management
 - Energy Source Minerals (USA) - ATLiS demonstration facility operational, 2024 presentations identify brine complexity as key barrier
 - Koch Engineered Solutions (USA) - EPC contractor for lithium projects, actively seeking scale prevention technologies
 - Lilac Solutions (USA) - \$150M raised, ion-exchange DLE requiring extensive pre-treatment, potential complementary licensing
 - Summit Nanotech (Canada) - \$12M raised, seeking brine treatment partnerships

HOW IT WORKS

Geothermal brines from sites like California's Salton Sea contain valuable lithium (100-400 mg/L) but also high concentrations of scale-forming ions and silica (300-600 mg/L) that rapidly foul conventional membrane-based direct lithium extraction systems. The membrane-free electrochemical system generates acid that maintains silica solubility (preventing catastrophic polymerization that destroys equipment) and simultaneously generates base that selectively precipitates scale-forming polyvalent ions (Ca, Mg, Ba, Sr, Fe) before the brine enters downstream lithium extraction stages. This pre-treatment unlocks over 10 million tons of domestic lithium resources currently inaccessible to conventional approaches while eliminating the \$20-50/ton pre-treatment costs that plague membrane-based systems.

TECHNICAL VALIDATION

- **Polyvalent tolerance demonstrated at industrial-relevant concentrations:** System operates with 300 μ M Mg/Si impurities using periodic reverse polarization (60s every 5h), addressing the fundamental failure mode where conventional membrane systems require polyvalent scrubbing to ppb levels
- **Acid-base co-generation with closed-loop recovery:** Mixed electrolyte (3M NaCl + 0.75M Na₂SO₄) produces acid (H₃O⁺/HSO₄⁻) and base (OH⁻) at 0.26-1.25M concentrations with 49-84% current efficiency and energy demand of 0.030-0.116 kWh/mol, with ~90% electrolyte recovery

demonstrated in olivine processing

- **Sequential pH-controlled precipitation validated:** Demonstrated selective precipitation of Fe, Si, and Mg from mineral leachates through staged catholyte addition at pH 8 and pH 10, with SEM-EDX confirming <1% cross-contamination in final Mg(OH)2 product
- **High current density enables compact footprint:** Achieves 140 mA/cm² productive current density (4-7× higher than membrane-based BPMED at ~30 mA/cm²), critical for integrating with high-flow geothermal operations processing 1000-10,000 gallons/minute
- **Maintenance strategy for scale management:** Voltage decay of 1.6 mV/h with polyvalent-containing electrolyte is repeatedly restored by reverse polarization, demonstrating practical long-term operation strategy without membrane replacement costs

MARKET VALIDATION

- **Immediate commercial demand confirmed:** Controlled Thermal Resources announced partnership with BHP for lithium extraction technology development in March 2024 and issued project RFI explicitly seeking brine pre-treatment and scale management solutions for their \$500M+ Hell's Kitchen project at Salton Sea
- **Salton Sea brines represent highest-value target:** Characterized as most challenging geothermal brines globally with 20,000+ mg/L Li, 50,000+ mg/L TDS, 300-400 mg/L silica at 100-300°C temperature—the exact conditions where conventional membrane systems fail catastrophically, creating desperate need for alternative approach
- **Strategic national security driver:** DoE Critical Materials and DoD Strategic Capabilities Office have active 2024-2025 funding programs supporting domestic lithium supply chain development; geothermal lithium co-located with renewable energy addresses import dependence (currently 93% of US lithium consumption is imported)
- **Multiple companies facing identical barrier:** Energy Source Minerals, CTR, Berkshire Hathaway Energy, and Standard Lithium all operate or plan facilities at Salton Sea and have published technical presentations identifying polyvalent/silica scaling as primary bottleneck limiting extraction efficiency
- **Established licensing pathways in sector:** Koch Engineered Solutions and Standard Lithium operate on technology licensing/integration business models rather than proprietary vertical integration, creating clear commercial pathway for pre-treatment technology adoption across multiple facilities

RISKS

- **High-temperature operation not validated:** Demonstrated only at ambient conditions while geothermal brines operate at 100-300°C where silica polymerization kinetics are orders of magnitude faster, materials compatibility is unknown, and cell voltage/efficiency may change substantially—fundamental enabling capability requires validation
- **Actual geothermal brine composition not tested:** Laboratory work used olivine/serpentine leachates with 300 µM Mg/Si; geothermal brines have 10-100× higher polyvalent concentrations (1000-5000 mg/L Ca/Mg), 300-600 mg/L silica, plus Ba/Sr/Fe and trace heavy metals that may exhibit different precipitation chemistry or electrode poisoning effects

- **Silica chemistry fundamentally different from demonstrated capability:** While polyvalent tolerance is proven, high-temperature silica polymerization is complex chemistry not addressed in mineral processing work; amorphous silica formation in acidic conditions at elevated temperature may require different pH control strategy than demonstrated serpentine SiO₂ passivation layer dissolution
- **Orders of magnitude scale-up required:** Geothermal facilities process 1000-10,000 gallons/minute; demonstrated 1 cm² cells at 0.1 mL/min represent 7-8 orders of magnitude scale-up with integration into existing geothermal power generation and downstream DLE systems adding substantial engineering complexity and cost uncertainty
- **Complex competitive landscape with potential conflicts:** Controlled Thermal Resources' existing BHP partnership may constrain vendor selection; Standard Lithium and Lilac Solutions have competing ion-exchange DLE technologies requiring low-polyvalent feeds and may view polyvalent-tolerant pre-treatment as competitive threat rather than complementary technology, limiting licensing prospects to 2-3 companies

EXPERIMENTAL VALIDATION RECOMMENDATIONS

- **Simulated Salton Sea brine testing at ambient temperature:** Formulate synthetic brine matching published Salton Sea composition (1000-5000 mg/L Ca/Mg, 300-600 mg/L silica, 50,000+ mg/L TDS, 100-400 mg/L Li, trace Ba/Sr/Fe) and test in existing cell configuration to validate polyvalent tolerance at 10-100× higher concentrations than demonstrated before investing in high-temperature equipment
- **Elevated temperature capability assessment (60-100°C range):** Modify existing electrochemical cell with external temperature control (water bath or heating jacket) to test operation at intermediate temperatures using simulated brine; assess materials compatibility, silica precipitation behavior, voltage/efficiency changes, and polarity reversal effectiveness—establishes feasibility before full 100-300°C validation
- **Silica polymerization prevention study:** Systematically vary pH (1.5-3.5 range), temperature (25-100°C), and silica concentration (100-600 mg/L) in anolyte to map conditions preventing precipitation; use turbidity measurement and particle size analysis to detect early-stage polymerization; compare effectiveness of HSO₄⁻ vs H₃O⁺ for maintaining solubility
- **Integrated sequential precipitation cascade:** Demonstrate complete process using simulated geothermal brine: (i) acid contact maintaining silica solubility, (ii) staged catholyte addition for Fe precipitation at pH 3-4, (iii) Ca precipitation at pH 8-9, (iv) Mg precipitation at pH 10-11, producing final Li-enriched brine suitable for downstream DLE with measured recovery efficiencies and cross-contamination analysis
- **Extended stability test with brine chemistry (100-500 hours):** Operate cell continuously using simulated geothermal brine at highest validated temperature with optimized reverse polarization protocol to assess electrode degradation mechanisms, silica fouling accumulation patterns, voltage decay trajectory, and electrolyte degradation—critical for projecting commercial system maintenance requirements and lifetime costs

MARKET VALIDATION RECOMMENDATIONS

- **Controlled Thermal Resources direct technical engagement:** Schedule presentation with CTR and

BHP engineering teams given March 2024 partnership announcement and active RFI; present demonstrated polyvalent tolerance and discuss high-temperature validation gap, timeline requirements, and integration with their Hell's Kitchen project—their response clarifies immediate licensing potential versus longer-term development opportunity

- **Salton Sea technology integrator outreach:** Contact Koch Engineered Solutions (currently serving Energy Source Minerals) and separately approach Berkshire Hathaway Energy as EPC/technology integrators rather than end-operators; assess their interest in pre-treatment technology, typical licensing/partnership structures, and deployment timelines—diversifies prospects and may provide pathway to multiple facilities
- **DoE Geothermal Technologies Office intelligence gathering:** Engage DoE program managers for Geothermal Technologies Office and Advanced Manufacturing Office to understand funding timeline for lithium extraction projects, technology readiness level expectations, validation requirements, and strategic priorities; may identify additional prospects, government co-funding opportunities for validation work, or reveal misalignment with program directions
- **Brief competitive technology landscape analysis:** Commission focused assessment through Stanford/MIT industry contacts or specialized consultant mapping: (i) current geothermal brine pre-treatment approaches and their limitations, (ii) recent licensing deals in lithium extraction technology sector, (iii) technology gaps competitors cannot address—clarifies positioning versus membrane-based, evaporation, or emerging approaches and informs licensing strategy
- **Pre-treatment cost sensitivity model development:** Build simple techno-economic model for capital and operating costs at relevant scale (1000 gallons/minute brine flow typical of Salton Sea facilities) incorporating demonstrated energy efficiency (0.060 kWh/mol), electrode costs, maintenance requirements, and scale-up factors; compare to published \$20-50/ton conventional pre-treatment costs—concrete economics enable productive licensing negotiations and identify cost-sensitivity drivers for process optimization

OPPORTUNITY VALIDATION REPORT

Ocean Alkalinity Enhancement for Marine CO2 Removal

- **Value Proposition:** Enables shipboard/coastal electrochemical generation of alkaline Mg(OH)2 directly from seawater (1350 mg/L Mg, 400 mg/L Ca) for ocean distribution at 2-3 MWh/tCO2, providing distributed at-sea alkalinity generation impossible with conventional membrane systems that fail completely with seawater polyvalent content, while avoiding mining and transport logistics for mineral alkalinity approaches.
- **Target Market:** Ocean carbon dioxide removal ventures and marine alkalinity enhancement programs seeking enabling technologies, with active near-term funding through ARPA-E MARINER (\$32M, 15 projects funded 2023-2024) and venture capital (\$200M+ in sector 2023-2024), though long-term market dependent on regulatory pathway establishment.
- **Top Prospects:**
 - Planetary Technologies (Canada) - \$9M raised, Feb 2024 technical report specifically mentions seeking electrochemical alkalinity generation
 - Running Tide (USA) - \$44M raised, Q1 2024 strategic update indicates seeking ocean alkalinity technologies to diversify from limestone grinding
 - CarbonRun (USA) - \$1.2M ARPA-E MARINER grant, explicitly researching "alternative alkalinity generation methods"
 - Project Vesta (USA) - Non-profit seeking technologies to accelerate olivine dissolution/conversion for coastal enhanced weathering

HOW IT WORKS

The membrane-free electrochemical cell processes seawater directly without pre-treatment, using hydrogen redox reactions to generate hydroxide ions that precipitate magnesium from seawater as Mg(OH)2 slurry. The compact bipolar gas diffusion electrode (BPGDE) architecture internally recycles hydrogen with >99.9% efficiency, eliminating external gas supply requirements critical for maritime deployment. Unlike membrane-based systems that fail when exposed to seawater's high polyvalent content (1350 mg/L Mg, 400 mg/L Ca), this approach tolerates these ions by design, enabling practical at-sea alkalinity generation for controlled ocean distribution to enhance CO2 uptake.

TECHNICAL VALIDATION

- **Polyvalent tolerance demonstrated at relevant concentrations:** Cell operated with 300 μ M Mg and Si impurities for 25+ hours using periodic polarity reversal (60s every 5h), demonstrating tolerance mechanism applicable to seawater's ~55 mM Mg and ~10 mM Ca without catastrophic fouling that destroys membrane systems.
- **Self-sufficient BPGDE operation confirmed:** Demonstrated 24h autonomous operation without external H2 supply with >99.9% internal utilization efficiency, eliminating parasitic energy costs and supply logistics critical for maritime deployment where external gas delivery is impractical.

- **Mg(OH)2 precipitation chemistry validated:** Extracted Mg(OH)2 from olivine (similar Mg source) with 90% efficiency and confirmed rapid carbonation reactivity (45 min to >90% under 1 atm CO2), establishing that electrochemically-generated base effectively precipitates magnesium as reactive hydroxide.
- **Compact stack architecture demonstrated:** Two-cell BPGDE stack operated at 2.03V quasi-steady-state with 73% current efficiency, showing scalable modular design suitable for shipboard installation with reduced footprint versus distributed single-cell systems.
- **Energy efficiency competitive with alternatives:** Operating at 0.060 kWh/mol acid-base production translates to ~2-3 MWh/tCO2 for alkalinity generation, comparable to electrochemical ocean CDR alternatives (Ebb Carbon, Captura) but using abundant magnesium versus sodium approaches with acidified discharge concerns.

MARKET VALIDATION

- **Active government funding signals demand:** ARPA-E MARINER program (\$32M, 15 projects funded 2023-2024) specifically targets ocean alkalinity enhancement with explicit focus on alkalinity generation methods, indicating validated technology gap and near-term procurement pathway for demonstrated solutions.
- **Venture-backed companies seeking enabling technologies:** Planetary Technologies (\$9M raised) February 2024 technical report explicitly mentions seeking electrochemical alkalinity generation; CarbonRun (\$1.2M ARPA-E grant) researching alternative alkalinity methods; both represent immediate licensing targets with defined technical needs.
- **Membrane system failure creates technology gap:** Conventional electrochemical ocean CDR systems (Ebb Carbon, Captura) require extensive seawater pre-treatment due to membrane polyvalent intolerance, creating 40-60% capital cost premium and operational complexity that membrane-free approach eliminates, addressing documented industry pain point.
- **Mineral approach limitations validate need:** Running Tide's limestone grinding approach faces dissolution kinetics limitations; Project Vesta's olivine dispersion shows decades-timescale weathering; electrochemically-generated reactive Mg(OH)2 provides 1000x faster reactivity addressing recognized barrier to scaling mineral-based ocean CDR.
- **Carbon credit pricing supports economics:** Frontier advance market commitment purchasing CDR credits >\$100/tCO2; at 2-3 MWh/tCO2 with \$0.05/kWh renewable electricity, operating costs ~\$100-150/tCO2 potentially competitive before accounting for capital costs, supporting commercial viability in voluntary carbon markets.

RISKS

- **Regulatory pathway uncertainty:** Running Tide UK project criticism (2024) and subsequent deployment pause highlights uncertain regulatory framework for ocean alkalinity enhancement; environmental impact assessment requirements and permitting timeline unclear, potentially delaying commercialization 2-5+ years despite technical readiness.
- **Seawater complexity not validated:** Demonstrated system used synthetic electrolytes with defined Mg/Si content; actual seawater contains complex trace metals (Fe, Cu, Zn, heavy metals), dissolved

organics, microorganisms, and variable salinity that may cause electrode poisoning, biofouling, or altered precipitation chemistry requiring extensive validation work.

- **Maritime deployment challenges unaddressed:** Shipboard operation introduces corrosion from salt spray, mechanical stress from wave motion, temperature cycling (-2°C to 35°C ocean surface), remote monitoring/maintenance requirements, and integration with vessel power/water systems - none demonstrated at even laboratory scale with representative conditions.
- **Ecological impact assessment gap:** While Mg(OH)2 is naturally-occurring mineral, controlled distribution at scale (thousands of tons) requires comprehensive environmental impact studies of precipitation plumes, pH gradients, bioavailability effects, and ecosystem responses that are not yet available, potentially triggering multi-year regulatory review.
- **Market timing and competitive positioning:** If Ebb Carbon or Captura achieve breakthrough membrane polyvalent tolerance, competitive advantage diminishes to operational simplicity; if carbon credit pricing collapses <\$50/tCO2 or ocean CDR regulations prohibit alkalinity enhancement entirely, market evaporates despite technical success; Running Tide criticism may have chilled investor appetite.

EXPERIMENTAL VALIDATION RECOMMENDATIONS

- **Process actual coastal seawater samples:** Collect 20-50L seawater from San Francisco Bay or Monterey Bay; operate cell at 100 mA/cm² for 10-25 hours measuring current efficiency, voltage stability, and Mg(OH)2 precipitation yield; analyze precipitate purity and electrode surfaces for trace metal deposition/fouling; validates full seawater ionic complexity including organics and trace metals with existing equipment.
- **Validate Mg(OH)2 formation from seawater Mg concentration:** Prepare synthetic seawater (ASTM D1141 or similar) at natural ~1350 mg/L Mg; demonstrate Mg(OH)2 precipitation at relevant current densities; measure precipitation efficiency and particle size distribution; validates that dilute seawater Mg (versus concentrated mineral leachates) precipitates effectively with laboratory analytical capabilities.
- **Test accelerated marine corrosion resistance:** Operate cells with seawater electrolyte under cyclic potential protocols simulating extended operation (100-500 hours compressed timeline); inspect GDE catalyst layers, titanium hardware, and separator for corrosion damage using existing SEM/EDX; identifies materials vulnerabilities before costly maritime trials.
- **Characterize biofouling susceptibility:** Add model organic foulants (bovine serum albumin, humic acids, algal extracts) to electrolyte at 10-50 mg/L concentrations typical of coastal waters; monitor voltage decay and current efficiency over 24-48 hours; test if periodic polarity reversal mitigates organic fouling using existing cell hardware.
- **Demonstrate Mg(OH)2 carbonation in synthetic seawater:** Carbonate electrochemically-produced Mg(OH)2 in synthetic seawater under controlled CO2 concentrations (400-1000 ppm simulating ocean surface); measure carbonation kinetics versus pure water; validates that salinity/ionic strength doesn't inhibit desired ocean CO2 uptake using available TGA/pXRD characterization.

MARKET VALIDATION RECOMMENDATIONS

- **Direct technical discussions with Planetary Technologies and CarbonRun:** These smaller companies (\$9M and \$1.2M raised) are explicitly seeking alkalinity generation technologies per published reports; request 30-min technical calls to present membrane-free seawater processing capability and assess fit with their ocean CDR approaches; high probability of substantive feedback given documented technology needs.
- **ARPA-E MARINER program manager consultation:** Contact ARPA-E program manager overseeing MARINER awards to understand: (a) technology gaps identified across 15 funded projects, (b) follow-on funding mechanisms for enabling technologies, (c) regulatory pathway insights from government perspective; leverages existing federal relationship infrastructure at Stanford/MIT.
- **Ocean Visions expert consultation on regulatory pathway:** Ocean Visions coordinates Road Map to Ocean-Based Carbon Dioxide Removal with 100+ experts; request briefing call on ocean alkalinity enhancement regulatory framework, environmental assessment requirements, and timeline expectations post-Running Tide criticism; provides authoritative view on commercialization barriers with single efficient interaction.
- **Environmental impact literature review for Mg(OH)2 distribution:** Task graduate student/postdoc to systematically review published studies on magnesium hydroxide ocean distribution, pH effects on marine ecosystems, and similar mineral enhancement approaches (e.g., olivine beach dispersion); synthesize regulatory concerns and data gaps; informs messaging and identifies required environmental studies for licensee discussions.
- **Running Tide criticism root cause analysis:** Review UK project pause documentation, media coverage, and scientific community response to understand specific concerns (monitoring methodology, ecosystem impacts, verification challenges); assess if membrane-free approach addresses or exacerbates identified issues; critical for positioning technology in post-Running Tide regulatory environment with minimal TTO staff time investment.